> It does this by detecting “communities” of densely connected nodes in a hierarchical fashion, partitioning the graph at multiple levels from high-level themes to low-level topics, as illustrated in Figure 1. Using an LLM to summarize each of these communities creates a hierarchical summary of the data, providing an overview of a dataset without needing to know which questions to ask in advance. Each community serves as the basis of a community summary that describes its entities and their relationships.
> It does this by detecting “communities” of densely connected nodes in a hierarchical fashion, partitioning the graph at multiple levels from high-level themes to low-level topics, as illustrated in Figure 1. Using an LLM to summarize each of these communities creates a hierarchical summary of the data, providing an overview of a dataset without needing to know which questions to ask in advance. Each community serves as the basis of a community summary that describes its entities and their relationships.