Hacker News new | past | comments | ask | show | jobs | submit login

Your list excludes most of well-known open-source AutoML tools such as auto-sklearn, AutoGluon, LightAutoML, MLJarSupervised, etc. These tools have been very extensively benchmarked by the OpenML AutoML Benchmark (https://github.com/openml/automlbenchmark) and have papers published, so they are pretty well-known to the AutoML community.

Regarding H2O.ai: Frankly, you don't seem to understand H2O.ai's AutoML offerings.

I'm the creator of H2O AutoML, which is open source, and there's no "enterprise version" of H2O AutoML. The interface is simple -- all you need to specify is the training data and target. We have included DNNs in our set of models since the first release of the tool in 2017. Read more here: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html We also offer full explainability for our models: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/explain.html

H2O.ai develops another AutoML tool called Driverless AI, which is proprietary. You might be conflating the two. Neither of these tools need to be used on the H2O AI Cloud. Both tools pre-date our cloud by many years and can be used on a user's own laptop/server very easily.

Your Features & Roadmap list in the README indicates that your tool does not yet offer DNNs, so either you should update your post here or update your README if it's incorrect: https://github.com/blobcity/autoai/blob/main/README.md#featu...

Lastly, I thought I would mention that there's already an AutoML tool called "AutoAI" by IBM. Generally, it's not a good idea to have name collisions in a small space like the AutoML community. https://www.ibm.com/support/producthub/icpdata/docs/content/...




Thank you for the feedback Ledell. And congratulations to you on the latest $ 100 million fund raise. Really great to see the space growing.




Join us for AI Startup School this June 16-17 in San Francisco!

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: