> if you can prove 1+1=2 at all, then the generalization to n+m=l (where l is the "intuitive" value of n+m) should be easy enough to use directly
But the proof of 1+1=2 is itself trivial in PA. So this really doesn't mean much. In fact it seems like you are agreeing with me that having explicit proofs of m+n=l for m,n>1 is meaningless.
> But my point is that, if you are constructing a proof in formal mathematics and find yourself at a step having to demonstrate 4+4=8
I understand your point, but saying that there might be an occasions where a proof of P can be meaningful is not the same as saying that a proof of P is meaningful. The former is almost a tautology, and can be said about practically any proof whatsoever.
> For me, I just have to note that all of the dependently typed programming languages I've played with have used Peano arithmetic for encoding the size of an array in the type system. As a result, the requirement of a proof that n+m=l (where l is the "intuitive" value...) has been encoded in the type of, say, array concatenation.
This doesn't show that those proofs are meaningful in mathematics.
But the proof of 1+1=2 is itself trivial in PA. So this really doesn't mean much. In fact it seems like you are agreeing with me that having explicit proofs of m+n=l for m,n>1 is meaningless.
> But my point is that, if you are constructing a proof in formal mathematics and find yourself at a step having to demonstrate 4+4=8
I understand your point, but saying that there might be an occasions where a proof of P can be meaningful is not the same as saying that a proof of P is meaningful. The former is almost a tautology, and can be said about practically any proof whatsoever.
> For me, I just have to note that all of the dependently typed programming languages I've played with have used Peano arithmetic for encoding the size of an array in the type system. As a result, the requirement of a proof that n+m=l (where l is the "intuitive" value...) has been encoded in the type of, say, array concatenation.
This doesn't show that those proofs are meaningful in mathematics.